Применение различных способов разложения многочлена на множители. Урок "применение различных способов разложения многочленов на множители" Разложить на множители используя различные способы

Цель урока:  формирование умений разложения многочлена на множители различными способами;  воспитывать аккуратность, усидчивость, трудолюбие, умение работать в парах. Оборудование: мультимедийный проектор, ПК, дидактические материалы. План урока: 1. Организационный момент; 2. Проверка домашнего задания; 3. Устная работа; 4. Изучение нового материала; 5. Физкультминутка; 6. Закрепление изученного материала; 7. Работа в парах; 8. Домашнее задание; 9. Подведение итогов. Ход урока: 1. Организационный момент. Нацелить учащихся на урок. Не в количестве знаний заключается образование, а в полном понимании и искусном применении всего того, что знаешь. (Георг Гегель) 2. Проверка домашнего задания. Разбор заданий, при решении которых у учащихся возникли трудности. 3.Устная работа.  разложите на множители: 1) 2) 3) ; 4) .  Установите соответствие между выражениями левого и правого столбцов: а. 1. б. 2. в. 3. г. 4. д. 5. .  Решите уравнения: 1. 2. 3. 4. Изучение нового материала. Для разложения многочленов на множители мы применяли вынесение общего множителя за скобки, группировку, формулы сокращенного умножения. Иногда удается разложить многочлен на множители, применив последовательно несколько способов. Начинать преобразование следует, если это возможно, с вынесения общего множителя за скобки. Чтобы успешно решать такие примеры, сегодня мы попытаемся выработать план последовательного их применения.

150.000₽ призовой фонд 11 почетных документов Свидетельство публикации в СМИ

ПЛАН-КОНСПЕКТ УРОКА

Тип урока : урок изучения нового материала на основе проблемного обучения

9 Цель урока

создать условия для отработки умений и навыков разложения многочлена на множители с использованием различных способов.

10. Задачи:

Образовательные

    повторить алгоритмы операций: вынесение общего множителя за скобку, способ группировки, формулы сокращённого умножения.

    сформировать умение:

применять знания по теме «разложение многочлена на множители различными способами»;

выполнять задания по выбранному способу действия;

выбирать наиболее рациональный способ для рационализации вычислений, преобразования многочленов.

Развивающие

    способствовать развитию познавательных способностей, внимания, памяти, мышления обучающихся через применения различных упражнений;

    развивать навыки самостоятельной работы и групповой работы; поддерживать интерес обучающихся к математике

Воспитывающие

поддерживать интерес обучающихся к математике

11.Формируемые УУД

Личностные: осознание цели деятельности (ожидаемый результат), осознание или выбор способа деятельности (Как я это сделаю? С помощью чего получу результат?), анализ и оценивание полученного результата; оценка своих возможностей;

Регулятивные: учитывать правило в планировании и контроле способа решения, планирование, оценка результатов работы;

Познавательные: выбор наиболее эффективных способов решения задач, структурирование знаний; преобразование информации из одного вида в другой.

Коммуникативные: планирование учебного сотрудничества с учителем и сверстниками, соблюдение правил речевого поведения, умение высказывать и обосновывать свою точку зрения, учитывать разные мнения и стремиться к координации различных позиций в сотрудничестве.

12 .Методы:

    по источникам знаний: словесные, наглядные;

    относительно характера познавательной деятельности: репродуктивный, частично-поисковый.

13.Формы работы учащихся: фронтальная, индивидуальная, групповая.

14. Необходимое техническое оборудование: компьютер, проектор, интерактивная доска, раздаточный материал (лист самоконтроля, карточки с заданиями), электронная презентация, выполненная в программе Power Point

15.Планируемые результаты :

Личностные воспитание чувства само- и взаимоуважения; развитие сотрудничества при работе в группах;

Метапредметные развитие речи; развитие у учащихся самостоятельности; развитие внимательности при поиске ошибок.

Предметные развитие умений работать с информацией, овладение способами решения

Ход урока:

1. Приветствие учащихся. Проверка учителем готовности класса к уроку; организация внимания ; инструктаж по работе с листом оценивания Приложение 1 , уточнение критериев оценки.

Проверка домашнего задания и актуализация знаний

1. 3а + 6 b = 3(а + 2 b )

2. 100 – 20с + с 2 = (10 + с) 2

3. с 2 – 81 = (с – 9)(с + 9)

4. 6х 3 – 5х 4 = х 4 (6х – 5)

5. ау – 3у – 4а + 12 = у(а – 3) – 4(а – 3)

6. 0,09х 2 – 0,25у 2 = (0,03х – 0,05у)(0,03х + 0,05у)

7. с(х – 3) – d (х – 3) = (х – 3)(с – d )

8. 14х 2 – 7х = 7х(7х – 1)

9. -1600 + а 12 = (40 + а 6 ) (40 - а 6 )

10. 9х 2 – 24ху + 16у 2 = (3х – 4у) 2

11. 8с 3 – 2с 2 + 4с – 1 =

2 (4с – 1) + (4с – 1) = (4с – 1)2с 2

12. b 4 + с 2 – 2 b 2 с = ( b c ) 2

(задания для домашней работы взяты из учебника, включают в себя разложение на множители разными способами. Для того, чтобы выполнить данную работу учащимся необходимо вспомнить ранее изученный материал)

Ответы, записанные на слайде, содержат ошибки, учащиеся учатся видеть способы, а так же замечая ошибки запоминают способы действий,

Учащиеся в группах, проверив домашнее задание выставляют баллы за проделанную работу

2 Эстафета Приложение 2 (участники команд, по очереди выполняют задание, при этом стрелкой соединяют пример и способ его разложения)

3a – 12b = 3(а – 4 b)

    2a + 2b + a 2 + ab = (а + b) (2 + а)

    9a 2 – 16b 2 = ( 3а – 4 b)(3a + 4b)

    16a 2 - 8ab + b 2 = (4а – b) 2

    7a 2 b – 14ab 2 + 7ab = 7ab(a – 2b + 1)

    a 2 + ab- a – ac- bc + c = (a + b – 1)(a – c)

    25a 2 + 70ab+ 49b 2 = ( 5а + 7 b) 2

    2 – 45у 2 = 5(х – 3у)(х + 3у)

Не раскладывается на множители

Метод группировки

С помощью слайда проводится проверка проделанной работы, при этом обращается внимание на то, что последний пример нужно соединить с двумя способами разложения (вынесение за скобку общего множителя и формула сокращенного умножения)

Учащиеся оценивают проделанную работу, вносят результаты в листы оценивания, а так же формулируют тему урока

3. Выполнение заданий (учащимся предлагается выполнить задание. Обсуждая решение в группе ребята приходят к выводу, что для разложения данных многочленов на множители требуется несколько способов. Та команда, которая первая предложит верное разложение, имеет право на доске записать свое решение, остальные записывают его в тетради.. В команде налажена работа помощи учащимся, которым тяжело справиться с заданием)

1) 2a 2 - 2b 2

5) 5m 2 + 5n 2 – 10mn

9) 84 – 42y – 7xy + 14x

13) x 2 y + 14xy 2 + 49y 3

2) 3a 2 + 6ab + 3b 2

6) cx 2 – cy 2

10) -7b 2 – 14bc – 7c 2

14) 3ab 2 – 27a

3) x 3 – 4x

7) -3x 2 + 12x - 12

11) 3x 2 - 3

15) -8a 3 b + 56a 2 b 2 – 98ab 3

4) 3ab + 15b – 3a – 15

8) x 4 – x 2

12) c 4 - 81

16) 0 , 09t 4 – t 6

4. Заключительный этап –

Разложение многочлена на множители

Вынесение общего множителя за скобки

Метод группировки

Формула сокращенного умножения

Итог урока. Учащиеся отвечают на вопросы: Какую задачу мы ставили? Удалось решить нам поставленную задачу? Каким способом? Какие получили результаты? Какими способами раскладывается многочлен на множители? Для выполнения каких заданий можно применить эти знания? Что на уроке у вас хорошо получалось? Над чем еще нужно поработать?

В течение урока учащиеся оценивали себя, в конце урока им предлагается сложить полученные баллы и выставить оценку в соответствии с предложенной шкалой.

Заключительное слово учителя: Сегодня на уроке мы учились определять какие способы необходимо применить, чтобы разложить многочлены на множители. Для закрепления проделанной работы

Домашнее задание: §19, №708, №710

Дополнительное задание:

Решите уравнение х 3 + 4х 2 = 9х + 36

Многочлены являются важнейшим типом математических выражений. На основе многочленов построено множество уравнений, неравенств, функций. Задачи различного уровня сложности зачастую содержат этапы разностороннего преобразования многочленов. Так как математически любой полином представляет собой алгебраическую сумму нескольких одночленов, наиболее кардинальным и нужным изменением является преобразования ряда многочлена в произведение двух (или более) множителей. В уравнениях, обладающих возможностью обнуления одной из частей, перевод полинома на множители позволяет приравнять какую-то часть к нулю, и решить, таким образом, все уравнение.

Предыдущие видеоуроки показали нам, что в линейной алгебре существует три основных способа перевода многочленов в множители. Это вынесение общего множителя за скобки, перегруппировка по подобным членам, применение формул сокращенного умножения. Если все члены полинома обладают некой общей основой, то её легко можно вынести за скобки, оставив остатки от делений в виде измененного многочлена в скобках. Но чаще всего, один множитель не подходит под все одночлены, затрагивая лишь их часть. При этом, другая часть мономов может иметь свою общую основу. В таких случаях применяется способ группировки - по сути говоря, вынесение за скобки нескольких множителей, и создание комплексного выражения, которое можно преобразовать другими путями. И, наконец, существует целый комплекс специальных формул. Все они образованы абстрактными расчетами, использующими метод простейшего почленного переумножения. В ходе расчетов, многие элементы в начальном выражении сокращаются, оставляя небольшие многочлены. Что бы каждый раз не проводить емкие вычисления, можно применять готовые формулы, их обратные варианты, или обобщенные выводы этих формул.

На практике, часто бывает так, что в одном упражнении приходится комбинировать несколько приемов, в том числе, и из разряда преобразования многочленов. Рассмотрим пример. Разложить на множители бином:

Выносим общий множитель 3х за скобки:

3х3 - 3ху2 = 3х(х2 - у2)

Как можно заметить на видео, вторые скобки содержат разность квадратов. Применяем обратную формулу сокращенного умножения, получая:

3х(х2 - у2) = 3х(х + у)(х - у)

Другой пример. Преобразуем выражение вида:

18а2 - 48а + 32

Уменьшаем числовые коэффициенты, вынося за скобки двойку:

18а2 - 48а + 32 = 2(9а2 - 24а + 16)

Что бы найти подходящую формулу сокращенного умножения для данного случая, необходимо несколько скорректировать выражение, подогнав под условия формулы:

2(9а2 - 24а + 16) = 2((3а)2 - 2(3а)4 + (4)2)

Порой, формулу в запутанном выражении увидеть не так просто. Приходится применять методы разложения выражения на составляющие элементы, или добавлять мнимые пары конструкций, типа +х-х. Корректируя выражение, мы должны соблюдать правила преемственности знаков, и сохранности значения выражения. При этом, нужно стараться привести многочлен к полному соответствию с абстрактным вариантом формулы. По нашему примеру применяем формулу квадрата разности:

2((3а)2 - 2(3а)4 + (4)2) = 2(3а - 4)

Решим более сложное упражнение. Разложим на множители многочлен:

У3 - 3у2 + 6у - 8

Для начала, проведем удобную группировку - первый и четвертый элемент в одну группу, второй и третий - во вторую:

У3 - 3у2 + 6у - 8 = (у3 - 8) - (3у2 - 6у)

Обратим внимание, что знаки во вторых скобках сменились на противоположные, так как мы вынесли минус за пределы выражения. В первых скобках можем записать так:

(у3 - (2)3) - (3у2 - 6у)

Это позволяет применить формулу сокращенного умножения для нахождения разности кубов:

(у3 - (2)3) - (3у2 - 6у) = (у - 2)(у2 + 2у + 4) - (3у2 - 6у)

Выносим со вторых скобок общий множитель 3у, после чего, выносим из всего выражения (бинома) скобки (у - 2), приводим подобные слагаемые:

(у - 2)(у2 + 2у + 4) - (3у2 - 6у) = (у - 2)(у2 + 2у + 4) - 3у(у - 2) =
= (у - 2)(у2 + 2у + 4 - 3у) = (у - 2)(у2 - у + 4)

В общем приближении, существует определенный алгоритм действий при решении подобных упражнений.
1. Ищем общие множители для всего выражения;
2. Группируем подобные одночлены, ищем общие множители для них;
3. Стараемся вынести за скобки наиболее подходящее выражение;
4. Применяем формулы сокращенного умножения;
5. Если на каком-то этапе процесс не идет - вписываем мнимую пару выражений вида -х+х, или иные самоаннулирующиеся конструкции;
6. Приводим подобные слагаемые, сокращаем лишние элементы

Все пункты алгоритма редко когда применимы в одном задании, но общий ход решения любого упражнения по теме можно соблюдать в заданном порядке.

Разделы: Математика

Тип урока:

  • по способу проведения - урок-практикум;
  • по дидактической цели – урок применения знаний и умений.

Цель: сформировать умение разложения многочлена на множители.

Задачи:

  • Дидактические : систематизировать, расширить и углубить знания, умения учащихся, применять различные способы разложения многочлена на множители. Сформировать умение применять разложение многочлена на множители путём комбинации различных приёмов. Реализовать знания и умения по теме: “Разложение многочлена на множители” для выполнения заданий и базового уровня и заданий повышенной сложности.
  • Развивающие : развивать мыслительную деятельность через решение разнотипных задач, учить находить и анализировать наиболее рациональные способы решения, способствовать формированию умения обобщать изучаемые факты, ясно и четко излагать свои мысли.
  • Воспитательные : развивать навыки самостоятельной и коллективной работы, навыки самоконтроля.

Методы работы:

  • словесный;
  • наглядный;
  • практический.

Оборудование урока: интерактивная доска или кодоскоп, таблицы с формулами сокращенного умножения, инструкции, раздаточный материал для работы в группах.

Структура урока:

  1. Организационный момент. 1 минута
  2. Формулирование темы, цели и задач урока-практикума. 2 минуты
  3. Проверка домашнего задания. 4 минуты
  4. Актуализация опорных знаний и умений учащихся. 12 минут
  5. Физкультминутка. 2 минуты
  6. Инструктирование по выполнению заданий практикума. 2 минуты
  7. Выполнение заданий в группах. 15 минут
  8. Проверка и обсуждение выполнения заданий. Анализ работы. 3 минуты
  9. Постановка домашнего задания. 1 минута
  10. Резервные задания. 3 минуты

Ход урока

1. Организационный момент

Учитель проверяет готовность кабинета и учащихся к уроку.

2. Формулирование темы, цели и задач урока-практикума

  • Сообщение о проведении заключительного урока по теме.
  • Мотивация учебной деятельности учащихся.
  • Формулирование цели и постановка задач урока (совместно с учащимися).

3. Проверка домашнего задания

На доске образцы решения упражнений домашнего задания №943 (а,в); №945 (в,г). Образцы выполнены учащимися класса. (Эта группа учащихся была выявлена на предыдущем уроке, свое решение они оформили на перемене). Учащиеся готовятся провести “защиту” решений.

Учитель:

Проверяет наличие домашних заданий в тетрадях учащихся.

Предлагает учащимся класса ответить на вопрос: “Какие трудности вызвало выполнение задания?”.

Предлагает сверить свое решение с решением на доске.

Предлагает учащимся у доски ответить на вопросы, которые возникли у учащихся на местах при проверке по образцам.

Комментирует ответы учащихся, дополняет ответы, разъясняет (если это необходимо).

Подводит итоги выполнения домашнего задания.

Учащиеся:

Предъявляют домашнее задание учителю.

Меняются тетрадями (в парах) и проверяют друг у друга.

Отвечают на вопросы учителя.

Сверяют свое решение с образцами.

Выступают в роли оппонентов, вносят дополнения, исправления, записывают другой способ, если способ решения в тетради отличается от способа на доске.

Обращаются за необходимыми пояснениями к учащимся, к учителю.

Находят способы проверки полученных результатов.

Участвуют в оценке качества выполнения заданий у доски.

4. Актуализация опорных знаний и умений учащихся

1. Устная работа

Учитель:

Ответьте на вопросы:

  1. Что значит разложить на множители многочлен?
  2. Сколько способов разложения вам известно?
  3. Как они называются?
  4. Какой самый распространенный?

2. На доске записаны многочлены:

1. 14х 3 – 14х 5

2. 16х 2 – (2 + х) 2

3. 9 – х 2 – 2хy – y 2

4. x 3 - 3x – 2

Учитель предлагает учащимся выполнить разложение многочленов № 1-3 на множители:

  • I вариант – вынесением общего множителя;
  • II вариант – применением формул сокращенного умножения;
  • III вариант – способом группировки.

Одному ученику предлагает разложить на множители многочлен №4 (индивидуальное задание повышенной трудности, задание выполняет на формате А 4). Затем на доске появляется образец решения заданий №1-3 (выполнен учителем), образец решения задания №4 (выполнен учеником).

3. Разминка

Учитель дает указания разложить на множители и выбрать букву, связанную с правильным ответом. Сложив буквы вы получите фамилию величайшего математика ХVII века, который внес огромный вклад в развитие теории решения уравнений. (Декарт)

5. Физкультминутка Учащимся зачитываются высказывания. Если высказывание верно, то учащиеся должны поднять руки вверх, а если неверно, то присесть за парту. (Приложение 2)

6. Инструктирование по выполнению заданий практикума.

На интерактивной доске или отдельном плакате таблица с инструкцией.

При разложении многочлена на множители необходимо соблюдать следующий порядок:

1. вынести общий множитель за скобки (если он есть);

2. применить формулы сокращенного умножения (если это возможно);

3. применить способ группировки;

4. проверить полученный результат умножением.

Учитель :

Предлагает вниманию учащихся инструкцию (делает акцент на шаге 4).

Предлагает выполнение заданий практикума по группам.

Раздает рабочие листы на группы, листы с копировальной бумагой для оформления заданий в тетрадях и их последующей проверки.

Определяет время на работу в группах, на работу в тетрадях.

Учащиеся :

Читают инструкцию.

Внимательно слушают учителя.

Рассаживаются по группам (по 4-5 человек).

Готовятся к выполнению практической работы.

7. Выполнение заданий в группах

Рабочие листы с заданиями для групп. (Приложение 3)

Учитель :

Управляет самостоятельной работой в группах.

Оценивает умение работать учащихся самостоятельно, умение работать в группе, качество оформления рабочего листа.

Учащиеся :

Выполняют задания на листах с копировальной бумагой, вложенных в рабочую тетрадь.

Обсуждают способы рационального решения.

Оформляют рабочий лист от группы.

Готовятся к защите выполненной работы.

8. Проверка и обсуждение выполнения задания

На интерактивной доске ответы.

Учитель :

Собирает копии решений.

Управляет работой учащихся, отчитывающихся по рабочим листам.

Предлагает провести самооценку своих работ, сравнить ответы по тетрадям, рабочим листам и образцам на доске.

Напоминает критерии выставления отметки за работу, за участие в ее выполнении.

Дает разъяснения по возникающим вопросам решения или самооценки.

Подводит первые итоги выполнения практической работы и рефлексию.

Подводит (совместно с учащимися) итог урока.

Говорит о том, что окончательно итоги будут подведены после проверки копий работ, выполненных учащимися.

Учащиеся :

Сдают копии учителю.

Рабочие листы крепят на доске.

Отчитываются о выполнении работы.

Осуществляют самопроверку и самооценку выполнения работы.

9. Постановка домашнего задания

На доске записано домашнее задание: № 1016(а,б); 1017 (в,г); № 1021 (г,д,е)*

Учитель :

Предлагает записать обязательную часть задания на дом.

Дает комментарий к его выполнению.

Предлагает более подготовленным ученикам записать № 1021 (г,д,е)*.

Сообщает, что нужно подготовиться к следующему уроку обзорного повторения

Это один из самых элементарных способов упростить выражение. Для применения этого метода давай вспомним распределительный закон умножения относительно сложения (не пугайся этих слов, ты обязательно знаешь этот закон, просто мог забыть его название).

Закон гласит: чтобы сумму двух чисел умножить на третье число, нужно каждое слагаемое умножить на это число и полученные результаты сложить, иначе говоря, .

Так же можно проделать и обратную операцию, вот именно эта обратная операция нас и интересует. Как видно из образца, общий множитель а, можно вынести за скобку.

Подобную операцию можно проделывать как с переменными, такими как и, например, так и с числами: .

Да, это слишком элементарный пример, так же, как и приведенный ранее пример, с разложением числа, ведь все знают, что числа, и делятся на, а как быть, если вам досталось выражение посложнее:

Как узнать на что, например, делится число, неет, с калькулятором-то любой сможет, а без него слабо? А для этого существуют признаки делимости, эти признаки действительно стоит знать, они помогут быстро понять, можно ли вынести за скобку общий множитель.

Признаки делимости

Запомнить их не так сложно, скорее всего, большинство из них и так тебе были знакомы, а что-то будет новым полезным открытием, подробнее в таблице:

Примечание: В таблице не хватает признака делимости на 4. Если две последние цифры делятся на 4, то и всё число делится на 4.

Ну как тебе табличка? Советую ее запомнить!

Что ж, вернемся к выражению, может вынести за скобку да и хватит с него? Нет, у математиков принято упрощать, так по полной, выносить ВСЕ что выносится!

И так, с игреком все понятно, а что с числовой частью выражения? Оба числа нечетные, так что на разделить не удастся,

Можно воспользоваться признаком делимости на, сумма цифр, и, из которых состоит число, равна, а делится на, значит и делится на.

Зная это, можно смело делить в столбик, в результате деления на получаем (признаки делимости пригодились!). Таким образом, число мы можем вынести за скобку, так же, как y и в результате имеем:

Чтоб удостовериться, что разложили все верно, можно проверить разложение, умножением!

Также общий множитель можно выносить и в степенных выражениях. Вот тут, например, видишь общий множитель?

У всех членов этого выражения есть иксы - выносим, все делятся на - снова выносим, смотрим что получилось: .

2. Формулы сокращенного умножения

Формулы сокращенного умножения уже упоминались в теории, если ты с трудом помнишь что это, то тебе стоит освежить их в памяти .

Ну, а если ты считаешь себя очень умным и тебе лень читать такую тучу информации, то просто читай дальше, глянь на формулы и сразу берись за примеры.

Суть этого разложения в том, что бы заметить в имеющемся перед тобой выражении какую-то определенную формулу, применить ее и получить, таким образом, произведение чего-то и чего-то, вот и все разложение. Дальше приведены формулы:

А теперь попробуй, разложи на множители следующие выражения, используя приведенные выше формулы:

А вот что должно было получиться:

Как ты успел заметить, эти формулы - весьма действенный способ разложения на множители, он подходит не всегда, но может очень пригодиться!

3. Группировка или метод группировки

А вот тебе еще примерчик:

ну и что с ним делать будешь? Вроде бы и на что-то делится и на, а что-то на и на

Но все вместе на что-то одно не разделишь, ну нет тут общего множителя , как не ищи, что, так и оставить, не раскладывая на множители?

Тут надо смекалку проявить, а имя этой смекалке - группировка!

Применяется она как раз, когда общие делители есть не у всех членов. Для группировки необходимо найти группки слагаемых, имеющих общие делители и переставить их так, чтобы из каждой группы можно было получить один и тот же множитель.

Переставлять местами конечно не обязательно, но это дает наглядность, для наглядности же можно взять отдельные части выражения в скобки, их ставить не запрещается сколько угодно, главное со знаками не напутать.

Не очень понятно все это? Объясню на примере:

В многочлене -- ставим член - после члена - получаем

группируем первые два члена вместе в отдельной скобке и так же группируем третий и четвертый члены, вынеся за скобку знак «минус», получаем:

А теперь смотрим по отдельности на каждую из двух "кучек", на которые мы разбили выражение скобками.

Хитрость в том, чтоб разбить на такие кучки, из которых можно будет вынести максимально большой множитель, либо, как в этом примере, постараться сгруппировать члены так, чтобы после вынесения из кучек множителей за скобку у нас внутри скобок оставались одинаковые выражения.

Из обеих скобок выносим за скобки общие множители членов, из первой скобки, а из второй, получаем:

Но это же не разложение!

П осле разложения должно остаться только умножение , а пока у нас многочлен просто поделен на две части...

НО! Этот многочлен имеет общий множитель. Это

за скобку и получаем финальное произведение

Бинго! Как видишь, тут уже произведение и вне скобок нет ни сложения, ни вычитания, разложение завершено, т.к. вынести за скобки нам больше нечего.

Может показаться чудом, что после вынесения множителей за скобки у нас в скобках остались одинаковые выражения, которые опять же мы и вынесли за скобку.

И вовсе это не чудо, дело в том, что примеры в учебниках и в ЕГЭ специально сделаны так, что большинство выражений в заданиях на упрощение или разложение на множители при правильном к ним подходе легко упрощаются и резко схлопываются как зонтик при нажатии на кнопку, вот и ищи в каждом выражении ту самую кнопку.

Что-то я отвлекся, что у нас там с упрощением? Замысловатый многочлен принял более простой вид: .

Согласись, уже не такой громоздкий, как был?

4. Выделение полного квадрата.

Иногда для применения формул сокращенного умножения (повтори тему ) необходимо преобразовать имеющийся многочлен , представив одно из его слагаемых в виде суммы или разности двух членов.

В каком случае приходится это делать, узнаешь из примера:

Многочлен в таком виде не может быть разложен при помощи формул сокращенного умножения, поэтому его необходимо преобразовать. Возможно, поначалу тебе будет не очевидно какой член на какие разбивать, но со временем ты научишься сразу видеть формулы сокращенного умножения, даже если они не присутствуют не целиком, и будете довольно быстро определять, чего здесь не хватает до полной формулы, а пока - учись, студент, точнее школьник.

Для полной формулы квадрата разности здесь нужно вместо. Представим третий член как разность, получим: К выражению в скобках можно применить формулу квадрата разности (не путать с разностью квадратов!!!) , имеем: , к данному выражению можно применить формулу разности квадратов (не путать с квадратом разности!!!) , представив, как, получим: .

Не всегда разложенное на множители выражение выглядит проще и меньше, чем было до разложения, но в таком виде оно становится более подвижным, в том плане, что можно не париться про смену знаков и прочую математическую ерунду. Ну а вот тебе для самостоятельного решения, следующие выражения нужно разложить на множители.

Примеры:

Ответы:​

5. Разложение квадратного трехчлена на множители

О разложении квадратного трехчлена на множители смотри далее в примерах разложения.

Примеры 5 методов разложения многочлена на множители

1. Вынесение общего множителя за скобки. Примеры.

Помнишь, что такое распределительный закон? Это такое правило:

Пример:

Разложить многочлен на множители.

Решение:

Еще пример:

Разложи на множители.

Решение:

Если слагаемое целиком выносится за скобки, в скобках вместо него остается единица!

2. Формулы сокращенного умножения. Примеры.

Чаще всего используем формулы разность квадратов, разность кубов и сумма кубов. Помнишь эти формулы? Если нет, срочно повтори тему !

Пример:

Разложите на множители выражение.

Решение:

В этом выражении несложно узнать разность кубов:

Пример:

Решение:

3. Метод группировки. Примеры

Иногда можно поменять слагаемые местами таким образом, чтобы из каждой пары соседних слагаемых можно было выделить один и тот же множитель. Этот общий множитель можно вынести за скобку и исходный многочлен превратится в произведение.

Пример:

Разложите на множители многочлен.

Решение:

Сгруппируем слагаемые следующим образом:
.

В первой группе вынесем за скобку общий множитель, а во второй − :
.

Теперь общий множитель также можно вынести за скобки:
.

4. Метод выделения полного квадрата. Примеры.

Если многочлен удастся представить в виде разности квадратов двух выражений, останется только применить формулу сокращенного умножения (разность квадратов).

Пример:

Разложите на множители многочлен.

Решение: Пример:

\begin{array}{*{35}{l}}
{{x}^{2}}+6{x}-7=\underbrace{{{x}^{2}}+2\cdot 3\cdot x+9}_{квадрат\ суммы\ {{\left(x+3 \right)}^{2}}}-9-7={{\left(x+3 \right)}^{2}}-16= \\
=\left(x+3+4 \right)\left(x+3-4 \right)=\left(x+7 \right)\left(x-1 \right) \\
\end{array}

Разложите на множители многочлен.

Решение:

\begin{array}{*{35}{l}}
{{x}^{4}}-4{{x}^{2}}-1=\underbrace{{{x}^{4}}-2\cdot 2\cdot {{x}^{2}}+4}_{квадрат\ разности{{\left({{x}^{2}}-2 \right)}^{2}}}-4-1={{\left({{x}^{2}}-2 \right)}^{2}}-5= \\
=\left({{x}^{2}}-2+\sqrt{5} \right)\left({{x}^{2}}-2-\sqrt{5} \right) \\
\end{array}

5. Разложение квадратного трехчлена на множители. Пример.

Квадратный трехчлен - многочлен вида, где - неизвестное, - некоторые числа, причем.

Значения переменной, которые обращают квадратный трехчлен в ноль, называются корнями трехчлена. Следовательно, корни трехчлена - это корни квадратного уравнения.

Теорема.

Пример:

Разложим на множители квадратный трехчлен: .

Сначала решим квадратное уравнение:Теперь можно записать разложение данного квадратного трехчлена на множители:

Теперь твое мнение...

Мы расписали подробно как и для чего раскладывать многочлен на множители.

Мы привели массу примеров как это делать на практике, указали на подводные камни, дали решения...

А что скажешь ты?

Как тебе эта статья? Ты пользуешься этими приемами? Понимаешь их суть?

Пиши в комментриях и... готовься к экзамену!

Пока что он самый важный в твоей жизни.